Thermal and mechanical analyses supporting the defects acceptance criteria definition for the ITER first wall

Germán Pérez, Raphaël Mitteau, Russell Eaton, René Raffray

ITER Organization, Route de Vinon sur Verdon - 13115 St. Paul Lez Durance - France

Overview and Context

- ITER Blanket System is one of the most challenging systems in ITER
- This poster aims to present the status of the models and analyses developed to support, in cooperation with experimental tests, the FW bond acceptance criteria definition
- Thermal and mechanical analyses have been performed using 3D and 2D models based on a section of the plasma facing component

- Contribute in absorbing radiation and particle heat fluxes from the plasma
- FUNCTIONS Shielding \rightarrow less heat and neutron loads in vacuum vessel and coils
 - Plasma-facing surface (low influx of impurities to the plasma)
 - Provide limiting surfaces during startup and shutdown
 - Blanket system consists of 440 Blanket Modules (BM). It covers ~600m²
 - Maximum total thermal load: 736 MW
 - Maximum allowable mass per module: 4.5 tons

FW bond acceptance criteria: R&D activities

- FW Beryllium armor \rightarrow Surface facing the plasma is arranged with tiles made of beryllium, a light metal, for controlling plasma contamination

- Beryllium tiles \rightarrow Bonded to a water cooled CuCrZr heat sink \rightarrow Manufacturing is delicate \rightarrow Bonding defects may occur (local absence of contact)
- Defect acceptance criteria definition \rightarrow Methodology that would define the defect size that would be acceptable to operation. This is done by a combination of analyses and experiments developed in collaboration between ITER and procuring DAs (Russia-RF, Europe-EU, China-CN)

- Experimental activity \rightarrow Tests performed by electron beam heating gun on mock-ups Be tiles \rightarrow Several cases of debonding were found (detected by overheating with IR) \rightarrow An important effort improving the manufacturing has been done \rightarrow Analyses can help on the understanding and optimisation Analyses supporting the experimental activities

CN;	T _{water} =1	52°C	; 4.7	MW/r	n²
331.981	22000				
327.821-	332 0				
323.657					
319.493					
315.329					
000 005					

- The thermal model \rightarrow Reproduces accurately the thermal behaviour observed in tests
- Analysis of the singularity \rightarrow Helps to interpret the bond performance
- **Elasto-plastic analysis** \rightarrow Local plastification is detected at the singularity area
- **Bond temperature analysis** \rightarrow Clarifies its influence on the general bond behavior

The views and opinions expressed herein do not necessarily reflect those of the ITER Organization. Acknowledgement: The authors are grateful to their colleagues in the ITER Blanket Section and to all external experts in the ITER parties. www.iter.org

2nd - 4th December 2013

Germán Pérez (email: <u>German.Perez@iter.org</u>); Monaco / ITER postdoctoral researcher; ITER Blanket Section Thermal and mechanical analyses supporting the defects acceptance criteria definition for the ITER first wall

1. A.R. Raffray, M. Merola, "Overview of the design and R&D of the ITER blanket system", Fusion Engineering and Design, 2012

- 2. R. Mitteau, "The design of the ITER first wall panels", Fusion Engineering and Design, 2013
- B. Bellin, "High heat flux testing of normal heat flux wall mock-ups with calibrated defects", ISFNT Conference, 2013

china eu india japan korea russia usa