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Introduction

I In fusion devices the operation of Ion Cyclotron
Radio-Frequency(ICRF) heating systems leads to the formation of
RF sheaths at the antenna which are thought to be the cause of
numerous unwanted interactions that reduce heating efficiency.

I RF antennas in fusion devices can experience similar RF processes
as in magnetized RF capacitive discharges [1].

I The presence of a magnetic field makes the behaviour of such
sheaths even more complicated.

I We are investigating how far the magnetic field affects the utility of
simple models, that ignore magnetic effects, in describing the RF
sheath.

MagPIC Code

I PIC codes model a plasma using computational particles called
superparticles which represent a large number of real particles.

I Superparticles move with a finite time step ∆t and fields are
calculated at the boundaries of finite sized cells, ∆x .

I MagPIC is an explicit 1d3v electrostatic PIC code with Monte Carlo
collisions - includes the effect of an external magnetic field.

I Simulates a 1D plasma-sheath
system in a symmetric parallel
plate capacitive discharge with one
electrode powered and the other
grounded.

I The magnetic field is of constant
strength but the angle, θ, is variable
relative to the electric field.
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Figure 1: CCP setup

Sheath Models

I Lieberman’s[2] sheath model assumes:
I step model for electrons.
I ions enter sheath with bohm velocity.
I collisionless ion motion is the sheath.
I no e− current to wall, ion current constant and monoenergetic.
I does not include magnetic effects.
I limitation : only considers case of single driving frequency.

I Lieberman expressed the sheath quantities as a function of a single
dimensionless parameter H.

H =
J2

0

en0πε0ω2kBTe
(1)

I Turner and Chabert’s[3] simple sheath model simplifies Lieberman’s
model to include arbitrary waveforms by introducing an ansatz:

n̄e = (1 − ξ)ni (2) ξ =
V̄
V0

(3)

I Chodura[4] was the first to study the sheath in the presence of an
oblique magnetic field:
I neglecting collisions and ionisation.
I postulated existance of a quasi-neutral magnetic presheath(MPS).
I ions are accelerated to the Bohm velocity in MPS.
I arrival of the ions at the Bohm velocity signifies the sheath edge.

I In this work we define the sheath edge where the positive space
charge in the sheath exactly compensates the negative surface
charge, and the field is zero:∫ sheathedge

electrode
n+(x)dx = −σ (4)
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Results

I Simulations were run using Helium gas with a driving voltage of 100V
with a plate separation of 8cm. The magnetic field strength was kept
constant at 12 mT while the angle was varied between 10-85◦.
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Figure 2: Density, Electron temperature and potential profiles for varying B-field angle.
Variation of sheath width, according to 3 different sheath definitions, with B-field angle.
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Figure 3: H parameter as a function of the B-field angle.
I Comparison of voltages and current densities from simulation results

with model predictions:
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Figure 4: Maximum and minimum sheath
voltage as a function of H from
simulations(markers) and model
predictions(line).
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Figure 5: Comparison of the ion current from
simulations(markers) with prediction of
model predictions(line).

Discussion and Future Work

I Initial investigation suggests that magnetized RF sheaths can be
described by simple models that do not include magnetic effects.

I Investigation into the behaviour of different definitions of sheath edge
with model predictions.

I Future work will include comparison of oblique cases with
experimental results and the extension of MagPIC into 2D.
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