Stellarator / Heliotron Complementary Path to Fusion

> M.C. Zarnstorff Princeton Plasma Physics Laboratory

Monaco ITER International Fusion Energy Days 2013 4 December 2013

Innovations Needed Beyond ITER

<u>Need</u>

- Higher fusion performance at ~same size higher Q, Q_{engineering} for net energy higher power density P_{fusion}
 → higher pressure (β)
- Steady state with less current drive
- Disruption free, reliable confinement
- Robust divertor & structure
- Breeding blankets producing tritium

And: must be simpler, more cost effective.

ITER

3D Shaping Gives Steady-State, Increased Reliability

For plasma confinement Need:

- Toroidal geometry
- Helical magnetic field

Stellarator / Heliotron

3D Magnetic field from coils
No driven current.
Steady state
Passive stability at high
pressure (β)

- Shared understanding of basic physics
- Will be informed by ITER

<u>Tokamak</u>

Strong plasma current External current drive power Maybe pulsed to be economical Current drives instabilities Requires feedback stabilization

Evolution of Stellarators / Heliotrons

- Invented by L. Spitzer in 1951
- Broadly studied after 1958 declassification
- 1970s & 80's: importance of optimizing 3D shape for confinement
- Many experiments of different designs, improving understanding
- Engineering approaches to high B, large scale

Large Helical Device (NIFS) a=0.55 m, R=3.9 m, B=3T, superconducting

Wendelstein 7-X (IPP, 2014) a=0.5 m, R=5.4 m, B=3T superconducting

MCZ 131204 4

3D Shaping Gives New Options for Improved Plasma Confinement

- Quasi-isodynamic
 - Design to cancel 3D & toroidal effects
 - Can eliminate some types of turbulence
 - W7-AS, LHD (partially optimized), W7-X (fully optimized)
- Quasi-symmetric
 - IBI approximately symmetric in magnetic coordinates quasi-axially (QA), quasi-helically (QH)
 - Tokamak like confinement properties
 - QA turbulence predicted to be like advanced tokamaks (very low)
 - Can be compact (aspect ratio as low as ~2.5) similar to tokamaks
 - HSX (small scale, Univ. of Wisconsin, quasi-helical)

Stellarators Already Provide Advanced Characteristics

Steady-state with

- ✓No disruptions. ⇒ Reduce forces on first wall, blankets, structures Reduced power exhaust loads on boundary
- ✓ No current drive \Rightarrow Low recirculating power

intrinsically high Q, higher reliability

✓ Quiescent high-beta up to 5%, with confinement similar to tokamaks.

✓ Very high density limit \Rightarrow higher fusion reactivity

easier plasma solutions for divertor

reduced fast-ion instability, fast ion loss to walls

 \checkmark No need for feedback stabilization \Rightarrow simplify plasma control,

strongly reduce diagnostics, actuators needed for reactor

✓ Stable detached divertor configs. \Rightarrow ~90% radiated in edge (W7AS,LHD)

Greatly simplifies design of Fusion Power systems.

Eliminating Current Drive Has Important Engineering Consequences

Strongly reduces recirculating power

- Provides design margin on operating performance, constraints
 - power production at lower plasma performance (e.g. L-mode)
 - power producing pilot plants at reduced size (conceptual)
- Reduces sensitivity to thermal conversion efficiency
 - can use lower temperature blanket with water cooling
 - reduce engineering challenges
- Minimizes wall penetrations, blocking of breeding blankets Increases Tritium Breeding efficiency

Summary

- Stellarators provide simpler solutions for Fusion Energy
 - No disruptions, no current-drive. Higher stable pressure.
 - No feedback stabilization. No nearby conducting walls.
 - Optimized configurations for improved confinement
 - <u>Relatively small steps</u> needed from achieved stellarator characteristics
- Need to validate understanding at large scale, with reactor-like plasmas (high temperature, low collisionality)
- Need to integrate with fusion technology development (metalic PFCs, remote maintenance, breeding blankets).