# Future Energy Security for the World

By John Parmentola Senior Vice President Energy and Advanced Concepts

Presented at The Monaco ITER International Fusion Energy Days 2013



December 3, 2013



### World Energy Requirements Present Major Challenges and Large Opportunities



### Fusion can be a major clean-energy factor in supporting this growth



### World's Lithium Reserves Hold 12X More Energy than ALL Uranium\*, Thorium\*, Coal, Oil and Natural Gas Supplies

World Proved Reserves (Trillion barrels of oil equivalent)





# Fusion – Energy for the Future of Mankind



- Fusion is an attractive source of electricity
  - Inherently safe clean energy
  - No long-term waste
  - Can produce its own fuel
  - Proliferation resistant



# **Perspectives in Fission and Fusion**

### Imaginable

### **Plausible**

### Understanding to solve unique problems

 Speculative application; no proof or detailed analysis

•

 Scientific research begins translation into applied R&D

- Analytical & lab studies
  to validate predictions of separate technology elements
  - Technology integration to establish pieces will work together at low fidelity



### Increased fidelity of breadboard technology; tests in simulated environment

Feasible

Representative model or prototype tested in relevant environment





### Worldwide Research has Advanced Fusion to the Goal of Sustained Ignition





TFTR

JET

- Significant fusion power (>10 MW) already demonstrated
- Many orders of magnitude (a factor of one trillion) improvement have been achieved over 40 years

# ITER will demonstrate a 500 MW sustained fusion plasma





### The World Tokamak Programs Are Working Together to Prepare for ITER



Gifted and talented work force is required to support & exploit ITER



### Levelized Cost of Electricity 1,000 MWe Fusion NOAK Plant



Current Cost of Tritium is ~\$100M/kg



### Sensitivity Analysis 1,000 MWe Fusion NOAK Plant

### Mean of Net Present Value 8000 Net Efficiency Net Present Value 6000 Cost of Capital Cost of Capital = 5% 4000 **Operating Cost** Electricity Sales Price = \$0.09/kWh 2000 Capital Cost 0 Availability -15% 80 %0 2% 8 5% %0 Change From Base Value (%)

### Sensitivity Tornado



### Net Present Value



# Path to Net Electricity and New Facilities





### Tritium Self-Sufficiency is a Critical Issue for Fusion Energy

- Cost of tritium from present sources is prohibitive and supply is limited
  - Tritium cost is approximately \$100 M/kg
  - 1GW electric for 1 day requires
    - ~  $\frac{1}{2}$  kg of Tritium
  - → 10 % short-fall = \$0.2/kW-hr
- Test Blanket Module program on ITER will address tritium breeding – 6 modules
  - Two from Europe, one each from Japan, China, Korea, and India
- Challenges remain in development of blankets for power plants
  - Produce sufficient tritium for the plant
  - Produce high quality heat
  - Survive in harsh environment: neutron fluence, temperature, & magnetic loads

### ITER Test Blanket Module Port



**Europe Helium Cooled Lead Lithium** 





### Fusion Reactor Creates Unique Challenge for Materials Due to Extreme Heat and Neutron Fluxes

- D-T reaction produces high energy neutron (14.1 MeV) and alpha particle (3.5 MeV)
- Neutron penetrates deeply into chamber walls and has distinct effect on economics
  - 2-3 GW volumetric heat source 80%
  - Enables tritium breeding
  - Reduced lifetime N<sub>lifetime</sub> of walls due to high dpa (100 dpa → N<sub>lifetime</sub> ~ 5 years)
    - Replacement cost ~ \$0.05/kW-h /N<sub>lifetime</sub>
- Surface heating of the divertor from plasma power flow can also limit lifetime
  - Heat source is largely alpha particles 20%
  - Peak heat fluxes near or above material limits for melting (~ 10 MW/m<sup>2</sup>)
  - Could be mitigated by plasma/divertor design





### Economical Tokamak Solutions Depend on Choice of Current Generation

 Fusion power density increases with the square of the plasma pressure

-  $P_F \approx p^2 \approx \beta^2 B^4 \approx (\beta_N I_P B)^2$ 

- Limits
  - $-\beta$  limited by plasma stability
  - B limited by mechanical forces
  - I<sub>P</sub> generated by central solenoid action or external current drive

### • Central solenoid $\rightarrow$ inherently pulsed

- Most efficient current drive: low recirculating power, I<sub>P</sub> large → High P<sub>F</sub>
- Pulsed operation reduces duty cycle and increases thermal and mechanical stresses

### • Steady state $\rightarrow$ external current drive

- Requires increased recirculating power
- Takes advantage of higher self-driven current
- Reduced cyclic stresses





An ITER objective: "Aim at non-inductive steady-state at Q >5"



## Promise of Fusion is Near – ITER Being Built Now

### **ITER Mission**

"To demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes."

General Atomics is manufacturing the most critical technology for ITER



220,000 pounds, 4 miles of conductor



Human scale

Partnership between U.S., EU, Japan, Russia, China, Korea and India



## Summary

- Fusion is by far the most abundant energy source available to satisfy the world's energy needs for many centuries
- We have an interesting and promising approach to fusion within our reach
- We can envision the end-point and the paths to realizing fusion energy, however, significant technical challenges remain

Pooling of world talent and resources will be required to overcome the remaining technical challenges

