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Tritium In fusion systems

O In a GW-class fusion reactor, a blanket
system must produce and recover
~100 kg tritium a year

O Main metals for structural materials of
fusion blankets (Fe, V, Ti, etc.) has high
permeability of hydrogen isotopes
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Critical fuel loss and radiological hazards
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‘ritium permeation barrier

Tritium Permeation Barrier (TPB)

——
Requirements:

O High permeation reduction factor (PRF)
PRF = ‘]uncoated/‘]coated >102-10°

O Compatibility with blanket materials
especially corrosive breeding materials

[ Tolerance for thermal cycles, irradiation etc.
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Variety of applications of TPB

1) Hydrogen loss by permeation

2) Constraint in structural material due to
hydrogen embrittlement

Possible applications:
€ Solid oxide fuel cell (SOFC)
€ Solar concentrator for H, production
€ Fast breeder reactor (hydride control rod)

€ Light-water fission reactor
(Zr-H,0O reaction at fuel cladding)
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Issues and challenges

Problems of TPB coating research
v Much higher permeability than bulks
v 4 orders of magnitude scattered data

10-11 E McGuire \-\\ ‘

Clarification of hydrogen permeation
mechanism through the coatings Is
crucial for a plant design!
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Coating material and methods

Periodic Table of the Elements

alkali metals

” Erblum Oxide (Er,0,) =
| v Originally selected as an electrical ~ le
Na| insulating coating v
K[| v/ High thermodynamic stability
| v/ Compatibility with liquid Li e
cs| v Lower crystallization temperature Q
" (<ALO;) =
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Coating material and methods
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Deuterium permeation experiment

Gas-driven permeation formula
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Comparison of permeation reduction factors

T (°C)

The world largest PRF (10°) by both-side-coated

samples has been achieved!

PRF: one-side-coated < both-side-coated

-> Multiplication of permeation steps are
effectlve for permeatlon reduction
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Permeation mechanism in Er,O, coating

———
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Modeling of hydrogen permeation
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Potential of multi-layer coatings (3)
Independent contributions of each layer have
been verified by Er,O;-Fe two-layer coatings

- Schemes of layer structure can be
optimized depending on requirements
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Potential of multi-layer coatings (4)
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Summary (1)

This presentation showcased R&D of TPB for
fusion systems and possible spin-offs

1) Methodology for the fabrication of high-

quality Er,O4 coatings has been established
using gas/liquid phase methods

- PRFs of up to 10° have been achieved
(world record at > 600 °C)

2) Various permeation behaviors have been
clarified by microstructural analysis and
deuterium permeation measurements
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Summary (2)

3) Modeling of tritium permeation through Er,O,
coating provided useful information for a
guidance of further TPB development

-> Surface coverage must primarily be secured

4) Optimization of materials and layer structures
may be one solution for the development of
TPB coatings and other applications

-> Multi-layer coatings have a possibility to
satisfy strict requirements by allocating
functions to each layer
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