Monaco Iter International Fusion Energy Days 2013 Grimaldi Forum, Van Dongen 4th December, 2013

Takumi CHIKADA

The University of Tokyo, Tokyo, Japan E-mail: chikada@nuclear.jp

Outline

- 1. Introduction
 - What is tritium permeation barrier?
 - Spin-off effects
- 2. Hydrogen permeation mechanism in Er_2O_3 coatings
 - Preparation and characterization
 - Modeling of hydrogen permeation
- 3. Latest progress and future prospects
 - Potential of multi-layer coatings
- 4. Summary

Tritium in fusion systems

In a GW-class fusion reactor, a blanket system must produce and recover ~100 kg tritium a year

Main metals for structural materials of fusion blankets (Fe, V, Ti, etc.) has high permeability of hydrogen isotopes

Critical fuel loss and radiological hazards

Tritium permeation barrier

Requirements:

- □ High permeation reduction factor (PRF) $PRF = J_{uncoated}/J_{coated} > 10^2 - 10^3$
- Compatibility with blanket materials especially <u>corrosive breeding materials</u>
- □ Tolerance for thermal cycles, irradiation etc.

Variety of applications of TPB

- 1) Hydrogen loss by permeation
- 2) Constraint in structural material due to hydrogen embrittlement

Possible applications:

- Solid oxide fuel cell (SOFC)
- Solar concentrator for H₂ production
- Fast breeder reactor (hydride control rod)
- Light-water fission reactor
 (Zr-H₂O reaction at fuel cladding)

Issues and challenges

les/cm^{2/s}

10-11

McGuire

Problems of TPB coating research

- ✓ Much higher permeability than bulks
- ✓ 4 orders of magnitude scattered data

Clarification of hydrogen permeation mechanism through the coatings is crucial for a plant design!

G.W. Hollenberg, et al., Fusion Eng. Des. 28 (1995) 190-208.

Coating material and methods

Thorium

Protactiniur

Uranium

Neptuniun

Plutonium

Copyright © 2009 Oxford Labs

Lawrencium

Nobelium

Curium

Berkelium

Californium

Einsteinium

Fermium

Mendelevium

Americium

Coating material and methods

Deuterium permeation experiment Gas-driven permeation formula pstream ownstream Richardson's law: Gauge 3 Permeation samplefusion Solution OMS Gauge 2 .5 Calibration **Furnace** Volume P: Permeabili **flux** J: Permeatio S: Solubility Üpstream D₂ pressure d: Stample thickness D: Diffusivit

Comparison of permeation reduction factors $T(^{\circ}C)$

- The world largest PRF (10⁵) by both-side-coated samples has been achieved!
- PRF: one-side-coated < both-side-coated
- → Multiplication of permeation steps are effective for permeation reduction

Permeation mechanism in Er₂O₃ coating

Modeling of hydrogen permeation

Potential of multi-layer coatings (3)
 Independent contributions of each layer have been verified by Er₂O₃-Fe two-layer coatings
 → Schemes of layer structure can be optimized depending on requirements

Potential of multi-layer coatings (4) Application _aver structure Structural materials **Materials Contacting materials** Number of layers Atmosphere **Methods** Temperature range **Thickness**

Gas / Liquid / Solid

Optimized barrier coating

Structural material

Summary (1)

This presentation showcased R&D of TPB for fusion systems and possible spin-offs

- Methodology for the fabrication of highquality Er₂O₃ coatings has been established using gas/liquid phase methods
- → PRFs of up to 10⁵ have been achieved (world record at > 600 °C)

2) Various permeation behaviors have been clarified by microstructural analysis and deuterium permeation measurements

Summary (2)

- Modeling of tritium permeation through Er₂O₃ coating provided useful information for a guidance of further TPB development
- → Surface coverage must primarily be secured
- Optimization of materials and layer structures may be one solution for the development of TPB coatings and other applications
- → Multi-layer coatings have a possibility to satisfy strict requirements by allocating functions to each layer

the way to new energy http://www.iter.org/newsline/264/1566

	iter		china eu india japan korea russia usa					Search		
	Construction	Transport	The Machine	The Science	The Organization	The Project	Glossary	General In	formation	
Latest	Issue							15 Apr. 2013 - #264		
Newsline Archive		π	iter newsline				Send us a comment view printable version			
Subsc	ribe to Newsline	12207 04						CONTRACTOR OFFICE		

<< return to Newsline #264

Fusion World

Verses In Brist

3rd European Energy Conference to be held in Budapest The Japanese people have a long history of creating ceramics of great beauty and elegance. Now they are putting their skills towards the search for materials for future fusion plants — in this case not crafting elegant forms, but elegant solutions:

Fusion draws on Japanese traditions

-FEDA

The search for a deeper

under

Next F in Jun

Thank you for your kind attention!

Karlsr on Fusion Technologies

Ci inamst

Getting a grip—remote handling at JET

Fusion-powered spaceships could send humans to Mars

_jrks

"InterFaces "

"Worldwide Fusion Links"

"ITER on Face book"

"ITER on YouTube"

coating, erbium oxide, which may prove to be a vital coating for use in tritium-carrying pipework. "Without solving this problem it will be impossible to operate a fusion reactor," he stated.

Because of its very small size, tritium tends to permeate through materials readily — an undesirable characteristic in a tritium processing plant, where tritium would be exposed to a large surface area as it passes through cooling, ducting and processing pipework.

Assistant Professor Takum i Chikada's studies show that a layer of erbium oxide only tens of microns thick on a steel surface could reduce permeation of tritium by 100 000 times © Rob-Keller from flick.com

Assistant Professor Chikada's results showed that a layer of erbium oxide only tens of microns thick on a steel surface could reduce permeation of tritium by 100 000 times.

Erbium oxide was originally chosen as an insulation coating because it has a high thermodynamic stability and is resistant to liquid lithium-lead — a proposed blanket material for fusion plants, which is corrosive to many materials.

Read more on the EFDA website.

Like Share One person likes this. Sign Up to see what your friends like.

Conferences

<< return to Newsline #264